horizontal rule

内训培训网欢迎您的访问。

分子 周易本义卦歌 转基因

核酸


    核酸 英文名称:nucleic acid 定义1:由核苷酸或脱氧核苷酸通过3′,5′-磷酸二酯键连接而成的一类生物大分子。具有非常重要的生物功能,主要是贮存遗传信息和传递遗传信息。包括核糖核酸(RNA)和脱氧核糖核酸(DNA)两类。

    核酸由许多核苷酸聚合成的生物大分子化合物,为生命的最基本物质之一。核酸广泛存在于所有动物、植物细胞、微生物内、生物体内核酸常与蛋白质结合形成核蛋白。不同的核酸,其化学组成、核苷酸排列顺序等不同。根据化学组成不同,核酸可分为核糖核酸,简称RNA和脱氧核糖核酸,简称DNA。DNA是储存、复制和传递遗传信息的主要物质基础,RNA在蛋白质合成过程中起着重要作用,其中转移核糖核酸,简称tRNA,起着携带和转移活化氨基酸的作用;信使核糖核酸,简称mRNA,是合成蛋白质的模板;核糖体的核糖核酸,简称rRNA,是细胞合成蛋白质的主要场所。

  核酸不仅是基本的遗传物质,而且在蛋白质的生物合成上也占重要位置,因而在生长、遗传、变异等一系列重大生命现象中起决定性的作用。   核酸在实践应用方面有极重要的作用,现已发现近2000种遗传性疾病都和DNA结构有关。如人类镰刀形红血细胞贫血症是由于患者的血红蛋白分子中一个氨基酸的遗传密码发生了改变,白化病患者则是DNA分子上缺乏产生促黑色素生成的酪氨酸酶的基因所致。肿瘤的发生、病毒的感染、射线对机体的作用等都与核酸有关。70年代以来兴起的遗传工程,使人们可用人工方法改组DNA,从而有可能创造出新型的生物品种。如应用遗传工程方法已能使大肠杆菌产生胰岛素、干扰素等珍贵的生化药物。

  1869年,F.Miescher从脓细胞中提取到一种富含磷元素的酸性化合物,因存在于细胞核中而将它命名为"核质"(nuclein)。但核酸 (nucleic acids)这一名词在Miescher发现“核质”20年后才被正式启用,当时已能提取不含蛋白质的核酸制品。早期的研究仅将核酸看成是细胞中的一般化学成分,没有人注意到它在生物体内有什么功能这样的重要问题。

  1944年,Avery等为了寻找导致细菌转化的原因,他们发现从S 型肺炎球菌中提取的DNA与R型肺炎球菌混合后,能使某些R型菌转化为S型菌,且转化率与DNA纯度呈正相关,若将DNA预先用DNA酶降解,转化就不发生。结论是:S型菌的DNA将其遗传特性传给了R型菌,DNA就是遗传物质。从此核酸是遗传物质的重要地位才被确立,人们把对遗传物质的注意力从蛋白质移到了核酸上。

  核酸研究中划时代的工作是Watson和Crick于1953年创立的DNA 双螺旋结构模型。模型的提出建立在对DNA下列三方面认识的基础上:   1.核酸化学研究中所获得的DNA化学组成及结构单元的知识,特别是Chargaff于1950-1953年发现的DNA化学组成的新事实;DNA中四 种碱基的比例关系为A/T=G/C=1;   2.X线衍射技术对DNA结晶的研究中所获得的一些原子结构的最新参数;   3.遗传学研究所积累的有关遗传信息的生物学属性的知识。综合这三方面的知识所创立的DNA双 螺旋结构模型,不仅阐明了DNA分子的结构特征,而且提出了DNA作为执行生物遗传功能的分子,从亲代到子代的DNA复制 (replication)过程中,遗传信息的传递方式及高度保真性。其正确性于1958年被Meselson和Stahl的著名实验所证实。DNA双螺旋结构 模型的确立为遗传学进入分子水平奠定了基础,是现代分子生物学的里程碑。从此核酸研究受到了前所未有的重视。

  三十多年来,核酸研究的进展日新月异,所积累的知识几年就 要更新。其影响面之大,几乎涉及生命科学的各个领域,现代分子 生物学的发展使人类对生命本质的认识进入了一个崭新的天地。双 螺旋结构创始人之一的Crick于1958年提出的分子遗传中心法则 (centraldogma)揭示了核酸与蛋白质间的内在关系,以及RNA作为遗 传信息传递者的生物学功能。并指出了信息在复制、传递及表达过 程中的一般规律,即DNA→RNA→蛋白质。遗传信息以核苷酸顺序的 形式贮存在DNA分子中,它们以功能单位在染色体上占据一定的位置 构成基因(gene)。因此,搞清DNA顺序无疑是非常重要的。1975年 Sanger发明的DNA测序(DNAsequencing)加减法为实现这一企图起了 关键性的作用。由此而发展起来的大片段DNA顺序快速测定技术──Maxam 和Gilbert的化学降解法(1977年)和Sanger的末端终止法(1977年), 已是核酸结构与功能研究中不可缺少的分析手段。我国学者洪国藩 于1982年提出了非随机的有序DNA测序新策略,对DNA测序技术的发 展作出了重要贡献。目前,DNA测序的部分工作已经实现了仪器的自 动化操作。凭借先进的DNA测序技术及其它基因分析手段,人类正在 进行一项以探明自身基因组(genome)全部核苷酸顺序(单倍基因组 含3×109碱基对)为目标的宏伟计划──人类基因组图谱制作计划 (human genome mapping project)。据称,此项计划的实现,将对 全人类的健康产生无止境的影响。 Watson-Crick模型创立36年后的1989年,一项新技术──扫描隧道 显微镜(scanning tummeling microscopy, STM)使人类首次能直接 观测到近似自然环境中的单个DNA分子的结构细节,观测数据的计算 机处理图像能在原子级水平上精确度量出DNA分子的构型、旋转周 期、大沟(major groove)及小沟(minor groove)。这一成果是对DNA 双螺旋结构模型真实性的最直接而可信的证明。此项技术无疑会对 人类最终完全解开遗传之谜提供有力的帮助。可喜的是,我国科学 家在这项世界领先的研究中也占有一席之地。

  核酸是生物体内的高分子化合物。它包括脱氧核糖核酸(deoxyribonucleicacid,DNA)和核糖核酸(ribonucleicacid,RNA)两大类。DNA和RNA都是由一个一个核苷酸(nucleotide)头尾相连而形成的,由C、H、O、N、P 5种元素组成。RNA平均长度大约为2000个核苷酸,而人的DNA却是很长的,约有3X109个核苷酸。

  单个核苷酸是由含氮有机碱(称碱基)、戊糖(即五碳糖)和磷酸三部分构成的。   碱基(base):构成核苷酸的碱基分为嘌呤(purine)和嘧啶 >(pyrimi-dine)二类。前者主要指腺嘌呤(adenine,A)和鸟嘌呤(guanine,G),DNA和RNA中均含有这二种碱基。后者主要指胞嘧啶(cytosine,C)胸腺嘧啶(thymine,T)和尿嘧啶(uracil,U),胞嘧啶存在于DNA和RNA中,胸腺嘧啶只存在于DNA中,尿嘧啶则只存在于RNA中。这五种碱基的结构如图。   嘌呤环上的N-9或嘧啶环上的N-1是构成核苷酸时与核糖(或脱氧核糖)形成糖苷键的位置。   此外,核酸分子中还发现数十种修饰碱基(themodifiedcomponent),又称稀有碱基,(unusualcomponent)。它是指上述五种碱基环上的某一位置被一些化学基团(如甲基化、甲硫基化等)修饰后的衍生物。一般这些碱基在核酸中的含量稀少,在各种类型核酸中的分布也不均一。如DNA中的修饰碱基主要见于噬菌体DNA,RNA中以tRNA含修饰碱基最多。   戊糖(五碳糖):RNA中的戊糖是D-核糖(即在2号位上连接的是一个羟基),DNA中的戊糖是D-2-脱氧核糖(即在2号位上只连一个H)。D-核糖的C-2所连的羟基脱去氧就是D-2脱氧核糖。   戊糖C-1所连的羟基是与碱基形成糖苷键的基团,糖苷键的连接都是β-构型。   核苷(nucleoside):由D-核糖或D-2脱氧核糖与嘌呤或嘧啶通过糖苷键连接组成的化合物。核酸中的主要核苷有八种。   核苷酸(nucleotide):核苷酸与磷酸残基构成的化合物,即核苷的磷酸酯。核苷酸是核酸分子的结构单元。核酸分子中的磷酸酯键是在戊糖C-3’和C-5’所连的羟基上形成的,故构成核酸的核苷酸可视为3’-核苷酸或5’-核苷酸。DNA分子中是含有A,G,C,T四种碱基的脱氧核苷酸;RNA分子中则是含A,G,C,U四种碱基的核苷酸。   当然核酸分子中的核苷酸都以形式存在,但在细胞内有多种游离的核苷酸,其中包括一磷酸核苷、二磷核苷和三磷酸核苷。   

  3’,5’-磷酸二酯键:核酸是由众多核苷酸聚合而成的多聚核苷酸(polynucleotide),相邻二个核苷酸之间的连接键即:3’,5’-磷酸二酯键。这种连接可理解为核苷酸糖基上的3'位羟基与相邻5'核苷酸的磷酸残基之间,以及核苷酸糖基上的5'位羟基与相邻3'核苷酸的磷酸残基之间形成的两个酯键。多个核苷酸残基以这种方式连接而成的链式分子就是核酸。无论是DNA还是RNA,其基本结构都是如此,故又称DNA链或RNA链。DNA链的结构如下示意图。   寡核苷酸(oligonucleotide):这是与核酸有关的文献中经常出现的一个术语,一般是指二至十个核苷酸残基以磷酸二酯键连接而成的线性多核苷酸片段。但在使用这一术语时,对核苷酸残基的数目并无严格规定,在不少文献中,把含有三十甚至更多个核苷酸残基的多核苷酸分子也称作寡核苷酸。寡核苷酸目前已可由仪器自动合成,它可作为DNA合成的引物(primer)、基因探针(probe)等,在现代分子生物学研究中具有广泛的用途。   核酸链的简写式:核酸分子的简写式是为了更简单明了的叙述高度复杂的核酸分子而使用的一些简单表示式。它所要表示的主要内容是核酸链中的核苷酸(或碱基)。下面介绍二种常用的简写式。   字符式:书写一条多核苷酸链时,用英文大写字母缩写符号代表碱基(DNA和RNA中所含主要碱基及缩写符号见表1-1),用小写英文字母P代表磷酸残基。核酸分子中的糖基、糖苷键和酯键等均省略不写,将碱基和磷酸相间排列即可。因省略了糖基,故不再注解“脱氧”与否,凡简写式中出现T就视为DNA链,出现U则视为RNA链。以5'和3'表示链的末端及方向,分别置于简写式的左右二端。下面是分别代表DNA链和RNA链片段的二个简写式:   5'pApCpTpTpGpApApCpG3'DNA   5'pApCpUpUpGpApApCpG3'RNA   此式可进一步简化为:   5'pACTTGAACG3'   5'pACUUGAACG3'   上述简写式的5'-末端均含有一个磷酸残基(与糖基的C-5'位上的羟基相连),3'-末端含有一个自由羟基(与糖基的C-3'位相连),若5'端不写P,则表示5'-末端为自由羟基。双链DNA分子的简写式多采用省略了磷酸残基的写法,在上述简式的基础上再增加一条互补链(complentarystrand)即可,链间的配对碱基用短纵线相连或省略,错配(mismatch)碱基对错行书写在互补链的上下两边,如下所示:   5'GGAATCTCAT3'   3'CCTTAGAGTA5'   5'GGAATC错配)   线条式:在字符书写基础上,以垂线(位于碱基之下)和斜线(位于垂线与P之间)分别表示糖基和磷酸酯键。如下图所示   上式中,斜线与垂线部的交点为糖基的C-3'位,斜线与垂线下端的交点为糖基的C-5'位。这一书写式也可用于表示短链片段。不难看出,简写式表示的中心含义就是核酸分子的一级结构,即核酸分子中的核苷酸(或碱基)排列顺序。


  从前面的描述我们也可以看得很清楚,核酸氧化分解后变成了磷酸和碱基的嘌呤和嘧啶,目前还没有发现嘧啶有何害处,但嘌呤无疑是导致人类尿酸增高和痛风的主要原因。   

    核酸氧化分解---生成嘌呤---嘌呤在肝脏进一步氧化成为(2,6,8--三氧嘌呤)又称为尿酸,尿酸盐沉积到关节腔等组织引起痛风发作。   

    因此,核酸不是越多越好,同时,这也说明了为什么中老年易患痛风,因为年纪来了,大量的细胞死亡,而细胞内有大量的核酸,生成嘌呤,再生成尿酸,从而导致痛风发作。防治好痛风就是要防止核酸被氧化。

  核酸是由核苷酸聚合而成的生物大分子。组成DNA的脱氧核糖核苷酸主要是dAMP、dGMP、dCMP和dTMP,组成RNA的核糖核苷酸主要是AMP、GMP、CMP和UMP。核酸中的核苷酸以3’,5’磷酸二酯键构成无分支结构的线性分子。核酸链具有方向性,有两个末端分别是5’末端与3’末端。5’末端含磷酸基团,3’末端含羟基。核酸链内的前一个核苷酸的3’羟基和下一个核苷酸的5’磷酸形成3’,5’磷酸二酯键,故核酸中的核苷酸被称为核苷酸残基。。通常将小于50个核苷酸残基组成的核酸称为寡核苷酸(oligonucleotide),大于50个核苷酸残基称为多核苷酸(polynucleotide)。

    核酸的变性和复性
  变性(denaturation)和复性(renaturation) 是双链核酸分子的二个重要物理特性。也是核酸研究中经常引用的术语。双链DNA,RNA双链区,DNA: RNA杂种双链(hybrid duplex)以及其它异源双链核酸分子(heteroduplex) 都具有此性质。

(1)DNA的变性

  指DNA分子由稳定的双螺旋结构松解为无规则线性结构的现象。确切地就是维持双螺旋稳定性的氢键和疏水键的断裂。断裂可以是部分的或全部的,是可逆的或是非可逆的。DNA变性不涉及到其一级结构的改变。凡能破坏双螺旋稳定性的因素都可以成为变性的条件,如加热、极端的pH、有机试剂甲醇、乙醇、尿素及甲酰胺等,均可破坏双螺旋结构引起核酸分子变性。变性能导致DNA 以下一些理化及生物学性质的改变。   溶液粘度降低。DNA双螺旋是紧密的"刚性"结构,变性后代之以“柔软” 而松散的无规则单股线性结构,DNA粘度因此而明显下降。   溶液旋光性发生改变。变性后整个DNA分子的对称性及分子局部的构性改变, 使DNA溶液的旋光性发生变化。   增色效应或高色效应(hyperchromic effect)。指变性后DNA 溶液的紫外吸收作用增强的效应。DNA分子具有吸收250-280nm波长的紫外光的特性,其吸收峰值在260nm。DNA分子中碱基间电子的相互作用是紫外吸收的结构基础,但双螺旋结构有序堆积的碱基又"束缚"了这种作用。变 性DNA 的双链解开,碱基中电子的相互作用更有利于紫外吸收,故而产生增色效应。一般以260nm下的紫外吸收光密度作为观测此效应的指标,变性后该指标的观测值通常较变性前有明显增加, 但不同来源DNA的变化不一,如大肠杆菌DNA经热变性后,其260nm的光密度值可增加40%以上, 其它不同来源的DNA溶液的增值范围多在20-30%之间。   以加热为变性条件时,增色效应与温度有十分密切的关系,这主要是变性温度取决于DNA自身的性质。热变性使DNA分子双链解开所需温度称为熔解温度( melting temperature,简写Tm)。因热变性是在很狭的温度范围内突发的跃变过程, 很像结晶达到熔点时的熔化现象,故名熔解温度。若以温度对DNA溶液的紫外吸光率作图,得到的典型DNA变性曲线呈S型。S型曲线下方平坦段,表示DNA的氢键未被破坏,待加热到某一温度处时,次级键突发断开,DNA迅速解链,同时伴随吸光率急剧上升,此后因"无链可解"而出现温度效应丧失的上方平坦段。Tm定义中包含了使被测DNA的50%发生变性的意义,即增色效应达到一半的温度作为Tm,它在S型曲线上,相当于吸光率增加的中点处所对应的横坐标。不同来源DNA间的Tm存在差别,在溶剂相同的前提下,这种差别主要是由DNA本身下列两方面的性质所造成的。(1)DNA的均一性。有二种含义,首先是指DNA分子中碱基组成的均一性,如人工合成的只含有一种碱基对的多核苷酸片段,与天然DNA比较,其Tm值范围就较窄。因前者在变性时的氢链断裂几乎可"齐同"进行,故所要求的变性温度更趋于一致。其次还包含有待测样品DNA的组成是否均一的意思,如样品中只含有一种病毒DNA,其Tm值范围较窄, 若混杂有其它来源的DNA,则Tm值范围较宽。其原因显然也与DNA的碱基组成有关。 总的说,DNA均一性,变性的DNA链各部分的氢键断裂所需能量较接近,Tm值范围较窄,反之亦然。(2)DNA的(G+C)含量。在溶剂固定的前提下,Tm值的高低取决于DNA分子中的(G+C)的含量。(G+C)含量越高,即G-C碱基对越多,Tm值越高。此点是易于理解的,因G-C碱基对具有3对氢键,而A-T碱基对只有2对氢键,DNA中(G+C)含量高显然更能增强结构的稳定性,破坏G-C间氢键需比A-T氢键付出更多的能量,故(G+C)含量高的DNA,其变性Tm也高。实验说明,Tm与DNA中(G+C)含量存在着密切相关性(图1-16),从中可看出,变性温度受到溶液离子强度的影响。Tm与(G+C)含量(X)百分数的这种关系可用以下经验公式表示(DNA溶于0.2mol/L NaCl中):   X%(G+C)=2.44(Tm-69.3)

(2)DNA的复性
  指变性DNA 在适当条件下,二条互补链全部或部分恢复到天然双螺旋结构的现象,它是变性的一种逆转过程。热变性DNA一般经缓慢冷却后即可复性,此过程称之为" 退火"(annealing)。这一术语也用以描述杂交核酸分子的形成(见后)。DNA的复性不仅受温度影响,还受DNA自身特性等其它因素的影响。以下简要说明之。   温度和时间。变性DNA溶液在比Tm低25℃的温度下维持一段长时间,其吸光率会逐渐降低。将此DNA再加热,其变性曲线特征可以基本恢复到第一次变性曲线的图形。这表明复性是相当理想的。一般认为比Tm低25℃左右的温度是复性的最佳条件,越远离此温度,复性速度就越慢。在很低的温度(如4℃以下)下,分子的热运动显著减弱互补链结合的机会自然大大减少。从热运动的角度考虑,维持在Tm以下较高温度,更有利于复性。复性时温度下降必须是一缓慢过程,若在超过Tm的温度下迅速冷却至低温(如4℃以下),复性几乎是及不可能的,核酸实验中经常以此方式保持DNA的变性(单链)状态。这说明降温时间太短以及温差大均不利于复性。   DNA浓度。复性的第一步是两个单链分子间的相互作用“成核”。这一过程进行的速度与DNA浓度的平方成正比。即溶液中DNA分子越多,相互碰撞结合“成核”的机会越大。   DNA顺序的复杂性。简单顺序的DNA分子,如多聚(A)和多聚(U)这二种单链序列复性时,互补碱基的配对较易实现。而顺序复杂的DNA,如小牛DNA的非重复部分,一般以单拷贝存在于基因组中,这种复杂特定序列要实现互补,显然要比上述简单序列困难得多。在核酸复性研究中,定义了一个Cot的术语,(Co为单链DNA的起始浓度,t是以秒为单位的时间),用以表示复性速度与DNA 顺序复杂性的关系。在探讨DNA顺序对复性速度的影响时,将温度、溶剂离子强度、核酸片段大小等其它影响因素均予以固定,以不同程度的核酸分子重缔合部分(在时间t时的复性率)取对数后对Cot作图,可以得到如图所示的曲线,用非重复碱基对数表示核酸分子的复杂性。如多聚(A)的复杂性为1,重复的(ATGC)n组成的多聚体的复杂性为4,分子长度是105核苷对的非重复DNA的复杂性为105。原核生物基因组均为非重复顺序,故以非重复核苷酸对表示的复杂性直接与基因组大小成正比,对于真核生物基因组中的非重复片段也是如此。在标准条件下(一般为0.18ml/L阳离子浓度,400核苷酸的长的片段)测得的复性率达0.5时的Cot值(称Cotl/2),与核苷酸对的复杂性成正比。对于原核生物核酸分子,此值可代表基因组的大小及基因组中核苷酸对的复杂程度。真核基因组中因含有许多不同程度的重复序列(repetitive sequence),所得到的Cot曲线要上图中的S曲线复杂。

(3)核酸分子杂交
  分子杂交(简称杂交,hybridization)是核酸研究中一项最基本的实验技术。其基本原理就是应用核酸分子的变性和复性的性质,使来源不同的DNA(或RNA)片段,按碱基互补关系形成杂交双链分子(heteroduplex)。杂交双链可以在DNA与DNA链之间,也可在RNA与DNA链之间形成。杂交的本质就是在一定条件下使互补核酸链实现复性(加热或碱处理)使双螺旋解开成为单链,因此,变性技术也是核酸杂交的一个环节。   若杂交的目的是识别靶DNA中的特异核苷酸序列,这需要牵涉到另一项核酸操作的基本技术─探针(probe)的制备。探针是指带有某些标记物(如放射性同位素32P,荧光物质异硫氰酸荧光素等)的特异性核酸序列片段。若我们设法使一个核酸序列带上32P,那么它与靶序列互补形成的杂交双链,就会带有放射性。以适当方法接受来自杂交链的放射信号,即可对靶序列DNA的存在及其分子大小加以鉴别。在现代分子生物学实验中,探针的制备和使用是与分子杂交相辅相成的技术手段。核酸分子杂交作为一项基本技术,已应用于核酸结构与功能研究的各个方面。在医学上,目前已用于多种遗传性疾病的基因诊断(gene diagnosis),恶性肿瘤的基因分析,传染病病原体的检测等领域中,其成果大大促进了现代医学的进步和发展。

  核酸、蛋白质谁更“牛”?   一般人都知道,生命是蛋白质存在的形式,蛋白质是生命的基础。在发现核酸前,这句话是对的,但当核酸被发现后,应该说最本质的生命物质是核酸,或是把上述的这句话更正为蛋白体是生命的基础。按照现代生物学的观点,蛋白体是包括核酸和蛋白质的生物大分子。   

    核酸在生命中为什么比蛋白质更重要呢?因为生命的重要性是能自我复制,而核酸就能够自 我复制。蛋白质的复制是根据核酸所发出的指令,使氨基酸根据其指定的种类进行合成,然后再按指定的顺序排列成所需要复制的蛋白质。世界上各种有生命的物质都含有蛋白体,蛋 白体中有核酸和蛋白质,至今还没有发现有蛋白质而没有核酸的生命。但在有生命的病毒研究中,却发现病毒以核酸为主体,蛋白质和脂肪以及脂蛋白等只不过充作其外壳,作为与外 界环境的界限而已,当它钻入寄生细胞繁殖子代时,把外壳留在细胞外,只有核酸进入细胞内 ,并使细胞在核酸控制下为其合成子代的病毒。这种现象,美国科学家比喻为人和汽车的关 系。即把核酸比为人,蛋白质比作汽车,入驾驶汽车到处跑,外表上看,人车一体是有生命运动的东西,而真正的生命是人,汽车只是由人制造的载入的外壳。近来科学家还发现了一 种类病毒,是能繁殖子代的有生命物体,其中只有核酸而没蛋白质,可见核酸是真正的生命物质。   

    因此我国1996年最新出版的《人体生理学》改变了旧教科书中只提蛋白质是生命基础的缺陷 ,明确提出:“蛋白质和核酸是一切生命活动的物质基础。”   然而,多少年来,人们在一味追求蛋白质、维生素、微量元素等营养时,却把最重要的角色 ——核酸忘却了,这不能不说是人类生命史上的一大遗憾。   

    没有核酸,就没有蛋白,也就没有生命。   

    然而遗憾的是,从目前的分析来看,人类无法从食物中直接摄取核酸.人体细胞内的核酸都是自己合成的.服用核酸对人体而言根本毫无营养价值,相反,有研究发现,过度摄入核酸会造成肾结石等疾病.   

    日本工业技术院产业技术融合领域研究所在8月3日出版的《自然》杂志上发表论文称,已开发出了治疗白血病的人造核酸。这种人造核酸就像一把剪刀,可发现引起白血病的遗传基因并将其剪除。科研小组的成员、东京大学研究生院教授多比良和诚根据动物实验结果认为,这种人造核酸将来有望成为治疗白血病的主要药物。   

    这次研究的对象是慢性骨髓性白血病(MCL),患者的异常遗传因子是由两个正常的遗传因子连接而成的,新开发的人造核酸可以发现这种变异遗传基因并将其切断。科学家过去也发现过能找到特定的遗传因子序列并将其切断的分子,但在切断特定遗传因子序列的同时往往对正常细胞造成伤害。而新开发出的核酸只在发现异常遗传因子时才被激活,平时则潜伏不动。   

    科研小组用人体白血病细胞进行了动物实验。他们将可与人造核酸反应的细胞和不可与人造核酸反应的细胞分别注射到8只实验鼠的体内。移植后第13周时,不与人造核酸反应的细胞全部死亡,而与人造核酸反应的细胞全部存活,证明人造核酸在生物体内十分有效。   

    科研小组说,此人造核酸的临床应用尚有诸多问题要解决,将来很可能是把患者的骨髓细胞抽出来,经人造核酸处理后,再把正常细胞的骨髓输回患者体内。

《论语》中英法对照 小王子中英法对照 蛋白质

酵母 人事经理的转基因工程 标点符号的用法

内训培训网感谢您的访问。

内训师姓名查询 内训师地区查询 内训师所在机构查询 内训师课程分类查询